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Abstract
The transcriptome, or gene expression profile, of
a tumor contains detailed information about the
disease. Although advances in sequencing tech-
nologies have generated larger and more infor-
mative data sets, there are still many questions
about how the transcriptome is regulated. One
class of regulatory elements consists of micro-
RNAs (or miRs), many of which are known to
be associated with cancer. To better understand
the relationships between microRNAs and differ-
ent cancers, we analyzed ∼9000 samples from 32
cancer types studies in The Cancer Genome Atlas
(TCGA). Using the Thresher R package to per-
form feature reduction, we found evidence for 21
biologically interpretable clusters of miRs. Many
of these clusters were statistically associated with
a specific type of cancer. Moreover, the clusters
contain sufficient information to distinguish be-
tween most types of cancer. We then used linear
models to measure, genome-wide, how much vari-
ation in gene expression could be explained by the
21 average expression values (“score”) of the clus-
ters. Based on the ∼20,000 per-gene R2 values,
we found that (a) mean differences between can-
cer types explain about 40% of variation; (b) the
21 miR cluster scores explain about 30% of varia-
tion, and (c) combining cancer type with the miR
scores explained about 56% of the total genome-
wide variation in gene expression. Our analysis
of poorly explained genes shows that they are en-
riched for olfactory receptor processes, sensory
perception and nervous system processing which
are necessary to receive and interpret signals from
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outside the organism. Therefore, it is reasonable
for those genes to be always active and not get
down-regulated by miRs. In contrast, highly ex-
plained genes are characterized by genes trans-
lating to proteins necessary for transport, plasma
membrane, or metabolic processes that are heav-
ily regulated processes inside the cell. The dis-
tribution of R2 values suggests that other genetic
regulatory elements such as transcription factors
(TF) and methylation would help explain some of
the remaining variation in gene expression. By
building a combined microRNA-TF-methylation
model, we can potentially predict the majority of
human transcriptomic expression.

1. Introduction
MicroRNAs (miRs) are a class of non-coding RNAs that
play a key role in negatively regulating messenger RNA
(mRNA) by complementarily binding to the mRNA and
inducing degradation or translational repression (He & Han-
non, 2004; Rupaimoole & Slack, 2017). This powerful form
of gene regulation was evolutionarily developed as a way to
protect cells against retroviruses (Houzet & Jeang, 2011).
The miR-mRNA interaction is entangled since each miR
can regulate hundreds of mRNAs, while each mRNA can
be controlled by multiple miRs. Further, miRs regulate and
are regulated by different types of long non-coding RNAs
(lncRNAs) (Peng & Croce, 2016; Garzon et al., 2010). In
cancer, a single miR can act as either an oncogene or a
tumor-suppressor in different contexts (Garzon et al., 2010).
Two notable example of miRs relation to cancer are the
association of miR-21 with melanoma (Melnik, 2015) and
the effect of the tumor suppressor miR-34a in liver cancer
(Daige et al., 2014).

Since miRs influence multiple pathways involved in cancer,
there has been an ongoing effort to target them to reduce
the risk of developing resistance to therapy (Garzon et al.,
2010; Peng & Croce, 2016; Iorio & Croce, 2012). Beyond
the challenges in developing inhibitors or mimics for miRs
and difficulties in delivering those chemicals to the tumor,
our limited understanding of the downstream effect of miRs
is a main reason that prevents drugs targeting miRs from
reaching the bedside of patients. Such limited knowledge is
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speculated to be the root cause of the failure of the first miR
targeted therapy (i.e., MRX34 targeting miR-34 for liver
cancer) (Dragomir et al., 2018) due to severe side effects,
which underscores the need for in-depth understanding of
the role of miRs in cancer and gene regulation.

The complex set of connections between miRs and other
cellular molecules makes it extremely difficult to predict
and analyze the precise role of a single miR in human cancer.
This complexity is amplified by the high false positive rates
of computational tools that try to predict miR-mRNA inter-
actions based on sequence complementarity or evolutionary
conservation (Riffo-Campos et al., 2016).

In this paper, we take a machine learning approach to further
understand miR-cancer and miR-mRNA relationships. We
leverage our newly developed feature extraction algorithm,
Thresher, to extract 21 biologically meaningful clusters of
miRs. Then we use the means of these 21 clusters (“scores”)
as features for clustering cancers and predicting gene ex-
pression. We show that using only 21 miR scores, we can
distinguish 32 cancer types of The Cancer Genome Atlas
(TCGA) (Cancer Genome Atlas Research Network et al.,
2013) data set, and we can explain a large portion of varia-
tion in gene expression.

From biological point of view, we interpret the extracted 21
miR clusters and then examine their association to different
cancer types. Our results indicate significant correlations
linking microRNA clusters with a particular cancer or set of
cancers. Finally, we perform gene enrichment analysis for
sets of genes whose expressions are poorly or well explained
by miR scores and interpret our findings.

2. Methods
In this section, we describe our data set, pre-processing, and
analysis methods. Figure 1 summarizes the steps of our
analysis.

Data. The data used in this study were collected by The Can-
cer Genome Atlas (TCGA) (Cancer Genome Atlas Research
Network et al., 2013). TCGA is a pan-cancer public data
repository that holds both clinical and omics data for over
10,000 patient samples. We used the FireBrowse web portal
to identify and download the data from patients included in
this study. Patients were selected based on the presence of
matched mRNA and microRNA sequencing data. In total,
n = 8895 patient samples reflecting 32 different cancer
types were obtained.

Processing and Filtering. We normalized the sequencing
data from individual samples by computing reads per kilo-
base per million (RPKM) (Mortazavi et al., 2008). Data
were then log2 transformed. We filtered the data by remov-
ing miRs that had a read count of zero in 75% of patients.

After filtering, p = 470 microRNAs remained. The follow-
ing steps are performed on the 8895× 470 data matrix.

Feature Extraction. After data processing and filtering,
we analyzed the microRNA data using version 1.1.1 of
the Thresher R package (Wang et al., 2018). Thresher has
three main steps: principal components analysis (PCA),
outlier filtering, and clustering on hyperspheres using von
Mises-Fisher distributions (Banerjee et al., 2005). During
PCA, Thresher automatically determines the number d of
significant principal components (PCs) by an adaptation of
a graphical Bayesian model of Auer and Gervini (Auer &
Gervini, 2008).For each feature i ∈ 1, . . . , 470, we have a d-
dimensional “feature representation vector” vi ∈ Rd. Here
vi contains the “loadings” of the feature on all d components
and represents the total contribution of the feature to the data
matrix. For feature selection, Thresher uses ‖vi‖2 ≥ 0.35
as a criterion to retain useful features, discarding the less
important ones (Wang et al., 2018) and reducing the number
of features to p0 ≤ p. Finally, it clusters the directions of
the remaining feature representation vectors on the hyper-
sphere using mixtures of von Mises-Fisher distributions to
k clusters where k is determined by Bayesian Information
Criterion (BIC) (Wang et al., 2018). When applied to omics
data sets, Thresher has shown to be able to recover one-
dimensional biologically interpretable clusters of features
(Abrams et al., 2018). So, after applying Thresher, the data
matrix for each cluster of features should contain only one
significant PC. Unlike dimension reduction by PCA, each
cluster reflects a natural collection of highly correlated miRs
or genes that can be interpreted biologically.

For our TCGA miR data set, p0 = p = 470, which means
that no miR was filtered out by the Thresher. Also, the
dimension of the feature representation vector is determined
as d = 21 and the final number of identified miR clusters
is k = 21. We take the mean expression of miRs in each
cluster as a new feature which we call the miR score of that
cluster. All of the following analysis is performed on the
resulting 8895× 21 miR score matrix, M.

Data Visualization. To show that the 21-dimensional miR
score has retained valuable information on the original
data set, we visualize the miR score matrix M using the t-
stochastic neighbor embedding (t-SNE) algorithm (Maaten
& Hinton, 2008) as implemented in version 0.13 of the Rtsne
R package.

Prediction. We use the score matrix M to predict 20289
gene expressions of each of n = 8895 samples using or-
dinary least squares. To fit m = 20, 289 linear models
efficiently we used MultiLinearModel function of version
3.1.6 of the ClassComparison R package. We call this set
of linear models the global model. Therefore, for each gene
g ∈ 1, . . . , 20289, we are minimizing ‖y(g) −Mβ

(g)
0 ‖2

to find the coefficients β
(g)
0 of the global model, where
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Figure 1. Workflow of our analysis. Starting from miR expression data (top right), we use the Thresher algorithm to extract biologically
meaningful cluster of miRs and perform enrichment analysis to interpret them (top left). We also use the scores (mean expression of miRs
in each cluster) of miR clusters to predict the gene expression of all genes (bottom right). From the R2 results, we select genes that are
poorly or highly explained by miRs and perform enrichment analysis to better understand their biological similarities (bottom left).

y(g) ∈ Rn is the vector of expression of g in all samples.

Cancer type contributes to gene expression through both
miRs and other biological pathways. To explore the effect of
cancer type on gene expression prediction performance, we
fitted cancer-specific linear models to predict the residuals
r(g) = y(g) −Mβ

(g)
0 of the global model. We call this

set of linear models the local model, which is equivalent to
minimizing ‖y(g)

t −Mt(β
(g)
0 +β

(g)
t )‖2 where Mt contains

rows of M for cancer type t and β
(g)
t is the corresponding

cancer-specific parameter.

This type of superposition models has been of recent inter-
est in the statistical machine learning community (Gu &
Banerjee, 2016) and is known by multiple names. It is a
form of multi-task learning (Zhang & Yang, 2017; Jalali
et al., 2010) when you consider prediction of expression in
each cancer as a task. It is also called data sharing (Gross
& Tibshirani, 2016) since information contained in data of
different cancer is shared through the common parameter
β
(g)
0 . And finally, it has been called data enrichment (Chen

et al., 2015; Asiaee et al., 2018) because you enrich your
data set with pooling multiple samples from different but
related data sources.

Performance Measure. We need a measure that summa-
rizes the ability of miRs to predict expression over all genes.
Mean Square Error (MSE) or Root MSE (RMSE) are stan-

dard measures of prediction performance of a linear regres-
sion. But since each response vector y(g) has different
variability, taking the mean of MSE or RMSE over 20, 289
linear regressions is not particularly informative. One way
to circumvent this issue is to work with Normalized RMSE
(NRMSE) where RMSE is divided by the mean, range, or
interquartile range of y(g). The problem with NRMSE, how-
ever, is that we do not know how to distinguish between
good or bad prediction performance.

For these reasons, we use theR2 statistic to report prediction
performance. R2 for the gth response is defined as

R2
g = 1− ‖y

(g) − f (g)‖22
‖y(g) − ȳ(g)‖22

where f (g) is our prediction, i.e., Mβ
(g)
0 or Mt(β

(g)
0 +β

(g)
t )

in global or local models, respectively. R2 can be thought
of as a measure of the percentage of variance explained
and is 0 ≤ R2

g ≤ 1, so we can meaningfully compare the
performance of regression across different responses and
take its average R̄2 = 1

m

∑m
g=1R

2
g as the overall power

of miRs in predicting the transcriptome. Note that R2 is
related to MSE normalized by variance as

R2 = 1− MSE
Var

.
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Figure 2. Plot of the non-linear t-SNE map of samples from 21-dimensional miR score space into two dimensions. Primary tumors are
plotted with an open circle, metastases with a hollow triangle, and normal samples with an asterisk. Importantly most of the 32 different
cancer types are distinguishable using only the 21 miR clusters. This indicates that microRNA expression can be a distinguishing factor of
many types of cancer.

Gene and MicroRNA Enrichment Analysis. To interpret
miR clusters, we performed enrichment analyses using three
main approaches:

1. comparing with clinically known miRs (Hydbring &
Badalian-Very, 2013),

2. the miRs enrichment and annotation (miEAA) tool
(Backes et al., 2016), which performs Fisher exact
tests based on the input set of microRNAs, and

3. the ToppGene tool (Chen et al., 2009), which performs
Fisher exact tests based on the input set of genes.

Since the input to ToppGene is a list of genes rather than

a list of miRs, we calculated the gene list for each miRs
cluster by selecting genes that were significantly correlated
with the mean expression of miRs in the cluster.

3. Results
3.1. Differentiating 32 cancers with 21 miR scores

After applying the unsupervised, nonlinear, t-SNE projec-
tion algorithm to the 8895×21 matrix M of miR scores, we
visualized the result in two-dimensions (Fig 2). We colored
the plot using the known cancer types to better understand
the patterns. In general, most cancers can be separated
purely based on their miR profile. There are a few exam-
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ples where multiple diseases are overlapping. For instance,
colon and rectal cancers almost perfectly overlap each other,
which makes biological sense given the similarity of the
tissues from which these cancers originate. Another intrigu-
ing example is the relationship between the three different
forms of kidney cancer. While all three can be clearly distin-
guished, the matched normal samples form a fourth group,
representing the “same” normal kidney profile. Overall,
this t-SNE plot demonstrates that the majority of cancers
can be distinguished purely based on their miR profile, and
overlaps tend to be based on the similarity of tissue type.

3.2. Viewing miR scores across cancer types

To determine if there were differences in the expression of
miRs across the cancer types we generated bean plots, three
of which are shown in Fig 3. The bean plots were generated
per cluster by plotting cancer types on the x-axis and the miR
score on the y-axis. Expression levels, and thus miR scores
were plotted on a log scale. The bean plots illustrate the
variation in expression across different cancer types for each
miR cluster. This helps inform the biological interpretation
of the cluster, since many clusters are noteworthy for having
a set of “outlier” diseases compared to the majority of cancer
types.

Figure 3. Bean plots of the log of miR score associated with cancer type. Horizontal line is the mean of the log of the score across all
cancers. Important to note cancer type per sub-figure are: a) Ovarian b) Squamous cell c) Melanomas.
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Ovarian (OV) cancer in cluster 20 (Fig 3A) is a great exam-
ple, with a mean value of 2.4 compared to the next lowest
cancer type with a mean value of 5.0. This demonstrates
that miRs in cluster 20 are highly under expressed in ovarian
cancer compared to all other cancer types. The bean plots
can also be used to find similarities across different cancers.
Cluster 17 (Fig 3B) shows a similarity across different types
of squamous cell cancers; namely, Lung Squamous Cell
(LUSC), Head and Neck Squamous Cell (HNSC), and Cer-
vical Squamous Cell (CESC) carcinomas. Although these
cancers arise in different organ systems, the underlying biol-
ogy of these cancers appears to be similar since they come
from the same progenitor cells. Finally, cluster 15 (Fig
3C) distinguishes melanomas from other forms of cancer.
This can be seen because both skin melanoma (SKCM) and
uveal melanoma (UVM) have much higher mean expression
than any other cancer. Again, this makes biological sense
given the underlying similarity of the origins of these two
diseases.

3.3. Enrichment analysis of 21 miR clusters

To dig deeper into the potential interpretations of miR clus-
ters we performed a set of enrichment analyses (Table 1).
First, a list of clinically known miRs was taken from the

study “Clinical applications of microRNAs” (Hydbring &
Badalian-Very, 2013). We cross-referenced these clinically
known miRs and noted in which of the 21 clusters they
were found; these are listed as “Known Important miRs”
in Table 1. Second, we ran each cluster of miRs through
the miEAA online analysis tool, which enables users to
enter a list of miRs to perform a set of enrichment analy-
ses based on Fisher exact tests over a variety of categories
such as diseases, chromosomes and pathways. Top hits
from this analysis are presented in the “miEAA” column
of Table 1. Finally, we performed a ToppGene enrichment
analysis. Since ToppGene only uses gene lists as input and
not miRs, we calculated the gene list per cluster by selecting
genes that were significantly correlated with the miR score
of each cluster (|r| ≥ .4). We ran each of these 21 lists of
genes through ToppGene, and report the top results in the
“ToppGene” column of Table 1.

3.4. Predicting gene expression across cancers with 21
miR scores

Our main goal was to understand how much of the variability
of transcriptome can be explained by miRs. To this end, we
fitted the global and local models explained in Section 2.
Intuitively, the global model should capture the variability

ID #of
miRs Known Important miRs miEAA ToppGene

1 9 miR-196a, miR-10b NA Sequence-specific DNA binding

2 26
miR-142-3p miR-21-5p,

miR-31-3P, miR-34a Chromosome 17 Enzyme inhibitor activity

3 19 let-7i, miR-29a, miR-31-5P NA Lymphoma, Interleukin-2 binding
4 4 miR-181a, miR-130a NA Common carcinoma
5 46 NA NA Autonomic nervous system development

6 35 miR-92b, let-7e, miR-181b
Melanoma, Lung Neoplasms,

Chromosome 22 NA

7 24 miR-99a Chromosome 11 Cell cycle

8 30 miR-363, miR-138, miR-9
Melanoma, Lung Cancer,

Pancreatic Cancer Schizophrenia, Alzheimer’s Disease

9 17 NA Chromosome X NA
10 29 miR-106b-3p, miR-345 NA Cervix carcinoma, Malignant neoplasm of ovary
11 2 NA NA NA
12 15 miR-148b NA NA
13 26 miR-19b, miR-106b-5p Chromosome 13 RNA binding, RNA splicing
14 3 miR-193b NA NA
15 22 miR-509 Chromosome 8 and X Metastatic melanoma, Melanosome membrane

16 30 miR-146a, miR-210
Melanoma Pathways,

Neoplasms Chromosome Breakage, Cell cycle process

17 36
miR-152, miR-205, miR-21-3p,

miR-145, miR-214, miR-193a-3p,
miR-27b, miR-375

Chromosome 5 Squamous cell carcinoma, Cell junction

18 5 miR-192, miR-194 NA Liver neoplasms
19 13 miR-200c, miR-141 NA Adenocarcinoma, Squamous cell carcinoma
20 29 NA NA NA

21 50 miR-187, miR-193a-5p, miR-92a
Melanoma, Alzheimers Disease,

RenalCcancer Cell Cycle, chromosomal part, Chromosome Breakage

Table 1. Results of enrichment analysis of 21 miR clusters with three different methods.
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due to the underlying similarity between different tissues
or cancer types, and the local model should fit the intra-
tissue variability of gene expression. Figure 4 illustrates
the distribution of R2 for the global (Fig 4a) and local (Fig
4b) models. The global model on average could explain
31% of the variation across the transcriptome, but still had a
large group of genes that are poorly explained, i.e., the spike
near R2 = 0 in Fig 4a. When the tissue information was
included in the analysis, the local model could explain 56%
of the variability of gene expression, a large improvement
over the global model. Also, the number of very poorly
explained genes was substantially reduced, Fig. 4b.

To test whether the performance of either model is due to
random chance (and also to isolate the predictive power of
tissue type), we supplemented our analysis with scrambled
versions of our original prediction experiment. We permuted
features of each sample independently to break any relation
between the features and the outcome. In other words, we
replaced each row i of the score matrix M with a random
permutation πi specific to that row, i.e., mi = πi(mi).

As we expected in the global model (Fig. 4c) the mean R2

substantially dropped and became almost zero. To our initial
surprise, the R2 mean for the scrambled local model was
0.43 which is higher than the un-scrambled global model
but lower than the local one (Fig. 4d). Since we have
broken the relation between features and outcome the only
part of the model that can meaningfully contribute to this
performance is the intercept of the linear model. And we
know that the intercept in the linear model is ȳ(g)−β(g)

t x̄(g).
Since we have scrambled each row separately, x̄(g) ∈ R21

(the average vector of all features) should not contribute to
the prediction power. Therefore, all of the transcriptome
variability that we can explain in the scrambled local model
is coming from the average per-tissue expression, ȳ(g). The
fact that the average gene expressions per tissue is a strong
predictor of the gene expression biologically makes sense
but the amount of that and its overlap with the predictive
power of miRs have not previously been established. Going
back to the poorly explained genes in the un-scrambled
global model (Fig. 4a), we observed that most of these genes
are only expressed in specific tissues and therefore, with

(a) R̄2 = 0.31 (b) R̄2 = 0.56

(c) R̄2 = 0.02 (d) R̄2 = 0.43

Figure 4. Distribution of R2and its mean for predicting 20, 289 gene expressions using 21 miR scores. a) Global model. b) Local model.
c) Scrambled global model. d) Scrambled local model.
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tissue type information, it is easier to predict them. This
fact can be deduced from the difference between the R2

distribution of un-scrambled global and local models where
the the spike near R2 = 0 in Fig. 4a has been smoothed out
in Fig. 4b.
Remark 1. Note that since the number of samples n =
8895 is much larger than the dimension p = 21, we can
solve the ordinary least square for both global and local
regressions without any model selection. Therefore, we
are not tuning any hyper-parameter (like the regularization
parameter of Ridge and LASSO regressions), and cross-
validation is not necessary to prevent over-fitting. To check
the generalization error, we have split samples of each can-
cer type two equal-size train and test parts. Then we com-
puted the parameters from training samples and calculated
the R2 from test samples. The distribution of R2 and its
mean was very similar to what we have presented above and
therefore, we are omitting that from the presentation.
Remark 2. We want to emphasize that our proposed model
is a predictive model, not a causal one. There are a few
papers that explored the causal role of miR in mRNA regu-
lation (Chen & Lu, 2018; Zhang et al., 2014; Nalluri et al.,
2017). Also, there is a new body of work in statistical ma-
chine learning literature that links causality to invariant pre-
diction across heterogeneous data source(Peters et al., 2016;
2017). Using invariant prediction principles and different
data sources such as TCGA and Gene-Tissue-Expression
(GTEx) (GTEx Consortium, 2017), we may be able to go
beyond prediction and recover the causal effects of miRs in
gene regulation.
Remark 3. Finally, although we are reporting prediction
results when using mean of each miR cluster as predictors
(miR score), the same analysis using the closest to the mean
miRs as features produced the same result and therefore
omitted from presentation. This fact justifies our paper title.

3.5. Enrichment analysis of genes highly or poorly
predictable by 21 miR scores

After performing the R2 analyses, we were interested in
determining if there was a pattern in the genes at either end
of the R2 distribution. In other words, is there some simi-
larity between the genes that are highly influenced by miRs
(large R2) or that are poorly influenced by miRs (small

R2). So, we selected cut offs for high (R2 > 0.8) and low
(R2 < 0.05) information based on theR2 distributions from
Figure 4a. These cut offs resulted in 35 high and 1089 low
influenced genes, respectively. Both gene lists were inde-
pendently run through ToppGene to perform enrichment
analyses (Table 2). In general, low information genes are
involved in olfactory receptor processes, sensory perception
and nervous system processing. These are all systems which
interpret and process signals from outside the organism, so
it makes sense that you would not want to turn off or down
regulate any of these external sensory systems. In contrast
the high information genes are characterized by being trans-
porters, plasma membrane proteins or involved in metabolic
process. All these processes require the transportation or
processing of internal components rather than involving out-
side influence. This makes it more important to regulate
on a smaller scale to maintain the health of the cell. These
are also processes that are more associated with the cells
response to viruses, linking back to the original biological
development of miRs as an antiviral factor. We also have
performed the same analysis using the R2 distribution of
the local model (Fig. 4b) and although the number of genes
resulted from the thresholding the R2 was different, the
enrichment analysis results were similar to that of the global
model, so we only presented the result of the global model.

4. Discussion
The fact that Thresher was able to reduce the set of 470
miRs into 21 one-dimensional clusters illustrates the poten-
tial complexity of the role of miRs in human cancer. The
majority of the 21 clusters distinguish 1 to 3 cancer types
from the remaining cancer types based on differential ex-
pression of microRNAs. Thus, it seems likely that these
separations are largely determined by tissue type as opposed
to a global mechanism of cancer. However, we also found
that the miR profiles in cancer are different from the profiles
of their corresponding normal tissues. This can be seen in
kidney, lung, and breast cancer in the t-SNE plot (Fig 2). In
all cases, the samples from normal tissue can be clearly seen
as a separate entity somewhat removed from the cancer sam-
ples. In the case of kidney cancers the plot also shows that
different forms of cancer from the same organ can develop
different distinct miR expression profiles.

Highly Predictable Genes Poorly Predictable Genes
GO:MF Terms Transporter activity Olfactory receptor activity
GO:BP Terms Organic hydroxy compound metabolic process Sensory perception of smell, nervous system process
GO:CC Terms Plasma membrane region Intermediate filament

Pathways Complement and coagulation cascades Olfactory transduction
Gene Families Solute carriers, Apolipoproteins Keratin associated proteins, Olfactory receptors

Table 2. Results of enrichment analysis of genes highly or poorly explained by miRs. (GO= Gene Ontology; BP = Biological Process; CC
= Cellular Component; MF = Molecular Function)
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The enrichment analyses of the 21 miR-clusters show some
interesting results (Table 1). Overall, there was an uneven
distribution of prior information across the clusters. Some
clusters, such as 16, contain a large number of clinically
known miRs and significant enrichment results for both the
miRs and gene lists. However, other clusters, such as 20,
had no prior information or significant enrichment findings.
This may indicate that some of these miRs have been associ-
ated with each other in the literature whereas others have no
such literature associations. Another interesting finding is
the high number of chromosomes pulled out of the miEAA
analysis. Seven of the 21 clusters had a significant associ-
ation with an individual chromosome. This indicates that
there may be a regulatory connection between miRs that are
physically located near each other on the same chromosome.

The R2 results for both the local and global models help
explain how miRs and tissue-specificity affect gene expres-
sion. In the global model only the miRs are taken into
account when calculating the linear models to generate R2

values. Thus, only the miR expression affects each genes’
R2 value. Since the average value in the global model is R2

= 0.31, through extrapolation approximately 30% of all tran-
scriptomic variation is due to miR expression patterns. The
related global scrambled model emphasizes this point since
the mean R2 value is almost zero. This scrambled model
shows that the only variability being taken into account is
the miR clusters themselves. This indicates that the clusters
Thresher generated have clear biological meaning.

The local model differed from the global model by incor-
porating cancer type into the linear model. Thus, the local
model used tissue-specific gene expression patterns as part
of the calculation of R2 values. This explains the substan-
tial increase in the average R2 value, increasing from 0.31
to 0.56 in the local model. However, the local scrambled
model also had an average R2 value of approximately 0.43,
dramatically higher than the global scrambled model. The
local scrambled model does not take into consideration the
microRNA clusters but does consider the underlying tissue-
specific transcriptomic differences among cancers. Thus,
approximately 40% of all transcriptomic variation is tissue-
specific. Taking both tissue and miR patterns into account
yields a non-additive average R2 value of 0.56. This indi-
cates that miR cluster expression and tissue-specific gene
expression patterns account for approximately 56% of all
transcriptomic variation. This is a major step forward in
understanding how the human transcriptome is influenced
and regulated.

5. Future Directions
Based on our findings , there are multiple future directions to
explore. First of all, we think that by adding other regulatory
elements such as transcription factors and methylation as

features to our analysis we should be able to explain much
more of the transcriptome’s variability. Exploring biological
interpretation of genes that are highly or poorly explained
by each regulatory element separately and also jointly may
shed light on important underlying biological pathways that
regulate gene expression across tissue types. In addition,
performing the same analysis on healthy samples such as
those in the GTEx (GTEx Consortium, 2017) and comparing
our results on TCGA cancer samples, should provide us with
new insights into the role of regulatory elements in cancer.

From a methodological point of view, there are several inter-
esting directions to explore. First, our preliminary analysis
shows that although the infrequent miRs that we discard in
preprocessing are zero-inflated, they are also tissue-specific
and may contain valuable information. Therefore, we are
looking for methods to go beyond simple thresholding non-
zero features to systematically deal with the zero-inflation
problem which is present in many other computation biol-
ogy application (Van den Berge et al., 2018).

Second, we want to compare Thresher feature extraction
findings with that of other automatic feature selection meth-
ods based on regularization such as Ridge regression and
LASSO (Hastie et al., 2009). An interesting avenue for
exploration is combining Thresher’s extracted feature clus-
ters with more complicated penalized regression method
like group LASSO (Yuan & Lin, 2006) and sparse group
LASSO (Simon et al., 2013).

Finally, we are treating the prediction of expression of each
gene as a separate task. In reality, many gene expressions are
correlated and modeling these relations explicitly may boost
the prediction performance. A suitable machine learning
tool for predicting the related outcomes is multi-response
models where the goal is to simultaneously fit regression
models for each task and learn the covariance structure be-
tween the outcomes (Kim & Xing, 2009; Chen & Banerjee,
2017).

6. Conclusion
In this paper we determined the amount of variability that
miRs play in influencing transcriptomic expression patterns.
Using data from The Cancer Genome Atlas (TCGA) we
were able to break down all miRs into 21 one-dimensional
clusters. These 21 clusters explained 31% of the total vari-
ability found in human transcriptomic expression within the
TCGA cohort. This result helps explain the amount of regu-
latory power that miR exert across the human transcriptome
and how different miRs are differentially associated with
specific tissue and cancer types.
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