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Influence Maximization for Informed Agents in 
Collective Behavior* 

Amir Asiaee Taheri, Mohammad Afshar, and Masoud Asadpour 

Abstract. Control of collective behavior is an active topic in biology, social, and 
computer science. In this work we investigate how a minority of informed agents 
can influence and control the whole society through local interactions. The prob-
lem we specifically target is that a minority of people with a bounded budget for 
initiating new social relations attempt to control the collective behavior of a socie-
ty and move the crowd toward a specific goal. Assuming that local interactions 
can only take place between friends, the minority has to initiate some new rela-
tions with the majority. The total cost of new relations is limited to a budget. The 
problem is then finding the optimal links in order to gain maximum impact on  
the society. We will model the problem as a diffusion process in a social network. 
The proof of NP-hardness of the problem for Local Interaction Game model of 
diffusion is presented. Simulations show that the proposed method surpasses the 
popular strategies based on degree and distance centrality in performance.  

1   Introduction 

Influencing society and changing the crowd behavior is one of the oldest ambi-
tions of social science. Social and political sciences pursue strong impact on the 
society to change the attitude of people and prevail a desired behavior in the socie-
ty. Socio-physics deals with such problems under the Opinion Formation topic [1]. 
In economical side this phenomena is known as Viral Marketing [2], [3].  

The main problem that has been investigated extensively for attaining manipu-
lation of crowd behavior is finding most influential persons of a society whom we 
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call initiators from now on. Organizational theory calls such influential persons 
key players [4] and in political science they are called opinion leaders [5].   

The idea is that influencing initiators would lead to the greatest possible diffu-
sion of a behavior in a society. In Viral Marketing initiators are influential cus-
tomers who are selected for direct marketing. Giving free samples or discounts are 
examples of marketing strategies for motivating initiators which would lead to 
stimulation of the others for buying the new product. Two-step flow theory in 
social and political sciences assumes initiators are well connected opinion leaders 
who channel media information to the masses [6].  

All solutions of “K most influential persons” (K-MIP) problem suppose that 
changing initiators’ opinions or behaviors is possible by costing a budget [7][8]. 
This simplification is not the case for real world problem, since opinion and beha-
vior of people usually cannot be influenced by paying money.  

On the other hand, studies in the field of Swarm Intelligence have more robust 
solutions to this problem. Couzin et al. [9] showed that among a group of foraging 
or migrating animals only a small fraction of them have proper information about 
the location of food source, or about the migration route. But these informed 
agents can guide the whole group through simple social interactions. The bigger 
the group is, the smaller the fraction of the required informed agents is. Halloy et 
al [10] showed in real experiments that informed robots in a mixed-society of 
animals (cockroaches) and robots can control the aggregation behavior of the 
mixed-society through microscopic interactions. 

The strategy followed in this paper is similar. The minority is regarded as in-
formed agents who want to have control on the opinion of the society. They 
should do this through social interactions that take place between local neighbors, 
i.e. agents that have direct friendship ties. So the minority has to have friendship 
relations with the majority or initiate new ties upon necessity. But in realistic situ-
ations, the total number of links that the minority can initiate is limited to a num-
ber, due to e.g. time or geographical distance. Now, the minority should choose 
which links to initiate in order to gain maximum impact on the society. 

The rest of this paper organized as follow: in Section 2 related works are dis-
cussed. Section 3 presents the selected model of diffusion. In Section 4 we convert 
our problem to an optimization and solve it in Section 5. Finally Section 6 consists 
of simulations that compare our method with well-known heuristics. 

2   Related Work 

K-MIP tries to manipulate crowd behavior by directly targeting initiators. There 
are many models that describe diffusion phenomena by using methods from  
different domains. Based on the selected diffusion model, method of finding in-
fluential persons can vary. In this section different diffusion models are described 
and K-MIP solution for each of them is presented.  

In all models, society is modeled by a directed graph ( , )G V E=  whose vertic-

es V  and edges E  are representing individuals and social relations respectively. 
In some models edges are weighted. Weights are usually interpreted as node v’s 
trust on ( )N v  which is the set of v’s neighbors. 
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The Linear Threshold Model (LTM) that is rooted in mathematical sociology 
[11] has been widely used in viral marketing [7]. At the beginning, every node v  
chooses a random threshold vθ ∈[0,1] that defines its general tendency to adopt a 

new belief. The link between nodes v  and u has weight ,u vb where ( )
1uvu N v

b
∈

≤ . 

The process begins with a set of active nodes who has adopted the new opinion. In 
each time step, a node is activated if the weight of its active neighbors exceeds its 
threshold. The process stops when no new activation is possible.   

The Independent Cascade Model (ICM), a well-known model in viral market-
ing [7] is originated from interacting particle systems [12]. In ICM each active 
individual has only one chance for activation of its neighbors. The probability of 
activation of a node v  by its neighbor u is equal to the weight of their social con-
nection and is independent of previous attempts of other v ’s neighbors. The 

process starts with a set of initiators and unfolds until all active nodes have used 
their chance for activation of the others.  

Kempe et al. [7] presents an algorithm for K-MIP when diffusions are LTM or 
ICM. They assume the same costs for activation of each person and showed that 
the problem is NP-hard. They exploited the submodularity of the problem struc-
ture and presented an (1 1/ )e− - approximation algorithm.  

Voter model is another popular model of social influence. In this model at each 
time step each node picks one of its neighbors at random and adopts its opinion. 
Even-Dar and Shapira [8] found the exact solution for K-MIP when the underlying 
interaction model is voter and cost of marketing each person is identical. Also they 
presented an FPTAS [8] for the case when each person has different costs.  

All mentioned methods tackle the problem of maximizing diffusion in social 
networks by persuading initiators to adopt a product or accept an opinion. But 
what if there is no way to convince an individual about changing his behavior the 
way we want? This is the case especially in changing the opinion of a crowd.  

This paper investigates the problem of influence maximization from a different 
view. The problem formulation is changed to a more realistic one. It is assumed 
that there exist a minority in the society with a different opinion from the majority 
who tries to propagate its belief by means of making new social relations. Minori-
ty has a limited budget and any new link has a cost. So, the problem is converted 
to finding the best links to be added by minority under the budget constraint.   

3   Diffusion Model 

As an underlying diffusion model, Local Interaction Game (LIG) [13] is chosen. 
LIG simultaneously benefits from rigorous game theoretic background and sim-
plicity. In this model each person is under the influence of his neighbors. The 
person is active if he adopted the minority’s opinion and inactive otherwise.  

In each relation, participants benefits only if they coordinate and choose the 
same action. Table 1 summarizes the payoffs of each player in coordination 
games. For simplicity the zero payoffs is set for incoordination. Person’s prefe-
rences and tendencies are distinguished by his name index in Table 1. 
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Table 1 Payoff table of LIG 

inactive  active  
u   

 v  

0, 0  ,
v u

a a  active  

,
v u

b b  0, 0  inactive  

 
At the beginning, the society U is inactive except a minority M . The minority 

intends to activate initiators by adding new links.  It can be shown [14] that v  
become active iff more than ( )v v v vb a bθ = +  proportion of its neighbors is active. 

Set tA  is the set of active nodes at time step t . 

4   Problem Formulation and Properties 

Minority itself can activate a set of nodes A without any cost. Suppose that the 
effect function :2 2M Ae →  finds the set A which is the union of minority and 

individuals that are activated by the minority up to the end of diffusion. Thus new 
links must be added to the members of set ( )U e M− . Suppose that adding a new 

link has the constant cost, α, and minority’s overall budget is B. Also suppose that 

for activating each node v , { }( )c v links must be created from minority to it. Then, 

activating initiator set ܵ of nodes costs: 

( ) { }( )
, ( )v S S U e M

c S c vα
∈ ⊆ −

= 
 

In this paper, α is considered to be one. For computing c({v}) values, we take fol-
lowing steps. Each node v  has neighbors in M and U M− that are called I  and 
J  respectively. Assume that ݒ is inactive, i.e. | | | | vI I J θ∪ < . Then set 

,X M X I⊆ ∩ = ∅ should initiate links to v  for its activation. These change the 

inequality to | |

| | v

I X

I J X
θ∪ >

∪ ∪
. Since c({v}) is the minimum size of set X for which 

the above inequality holds it can be computed as { }( ) | |
| |

1

v

v

J
c v I

θ

θ
=

−

 −  
. 

4.1   Optimization Problem 

Previous works focused only on K-MIP which is the identical cost MIP [7]. In our 
problem, each individual’s cost can differ from the others, so the problem can  
be called N-MIP (Non-identical cost Most Influential Person). We define a set  
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function that takes an initiator set S  and maps it to the number of individuals that 
are going to be activated by the end of the process. 

Let ݂: 2ିሺெሻ ՜ Թ map the initiators ( )S U e M⊆ −  to the number of active 

nodes at the end of the process. Then N-MIP problem can be viewed as maximiz-
ing ݂subject to the limited budget. Using above definitions the problem is: 

Problem: Find set ܵ that maximize function f  subject to the cost constraint: 

*

( )
arg max ( ) . . ( )
S U e M

S f S s t c S B
⊆ −

= ≤  

First we show this problem is NP-hard for LIG model. Next we claim ( )f S  is 

submodular, so we can exploit maximization algorithms for submodular functions.  

4.2   NP Hardness of Efficient Link Addition Problem 

Kempe et al. [7] showed that finding K-MIP under LTM is NP-hard. Based on 
their proof, we show that NP-complete Vertex Cover problem is a special case of 
K-MIP for LIG model which itself is an especial case of N-MIP. For a graph 

( , )G V E=  and integer k  Vertex Cover finds a set S V⊆  that every edge of G  

has an endpoint in it. If there is a Vertex Cover S  of size k  in G  then
( ) | ( ) |f S U e M= − . On the other hand this is the only way that for all settings of 

thresholds one can deterministically activate all society. So Vertex Cover is an 
especial case of identical cost most influential person for LIG. Based on defini-
tion, K-MIP is an especial case of N-MIP. Since it is proved that Vertex Cover is 
an especial case of K-MIP, N-MIP is also NP-hard. 

4.3   Submodularity of f  

f is submodular if it satisfies a natural “diminishing returns” property: adding 

new element to a subset produce gain which is at least as high as adding that ele-
ment to a superset [15]. Formally f  is submodular iff for everyT S⊆ , 

{ } { }( ) ( ) ( ) ( )f T v f T f S v f S∪ − ≥ ∪ − holds. 

Kempe et al. [7] showed that when diffusion model is LTM, ݂ is a submodular 
function. We show that LIG is an especial case of LTM so f for LIG is submodu-

lar too. In LTM each neighbor u of node v  can influence it according to the 

weight uvb  such that
( )

1uvu N v
b

∈
≤ . Thus v  would become active in step 1t +  if

( ) t
uv vu N v u A

b q
∈ ∧ ∈

≥ . If uvb  is set to 1 | ( ) |N v  the inequality changes to 

| | | ( ) |tA N v which is the condition of v’s activation in LIG. So LIG is a special 

case of LTM when 1 | ( ) |uvb N v= . Therefore f  is submodular for LIG.  
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5   Optimization Algorithm 

Up to this point the link addition problem has been converted to a submodular 
function optimization problem using game theoretic diffusion models. Submodu-
lar function optimization is an active field of research in machine learning. Since 
submodularity arises in many real world optimization problems many advance-
ments has been made during recent years in this old topic [16]. Nemhauser et al. 
[15] proved that a simple greedy algorithm is within ሺ1 െ 1 ݁⁄ ሻ ൎ 0.63% of max-
imum when ( ) | |c S S= . For general cost functions [17] showed that for the special 

case of MAX-COVER problem ሺ1 െ 1 ݁⁄ ሻ/2 ൎ 0.31%  approximation guarantee 
is reachable and a ሺ1 െ 1 ݁⁄ ሻ guarantee can be achieved using partial enumeration. 
Recently [18] extended their result to general submodular functions and [19] in-
troduced an online boundary for any algorithm.  

Since our problem is reduced to maximizing a submodular function subject to a 
bounded non-identical cost function, we follow [19] and call our algorithm Effi-
cient Link Addition Strategy (ELAS). The greedy approach proposed by Leskovec 
et al.  [19], iteratively adds nodes to the selected set ܵ by choosing a node ݒ that 
maximizes { } { }( )( ) ( )f S v f S c v∪ − . This heuristic is an extension of [15] which 

uses { }( ) ( )f S v f S∪ −  as the selection criteria in each iteration. They showed 

[19] that choosing best results of one of the mentioned heuristic provides a con-
stant factor approximation. Formally, if NIC  be the solution of non-identical cost 

algorithm that uses { } { }( )( ) ( )f S v f S c v∪ −  and IC  be the solution of identic-

al cost algorithm which uses { }( ) ( )f S v f S∪ − , it can be proved that: 

{ }
( ), ( )

1 1
max ( ), ( ) (1 ) arg max ( ( ))

2 S U e M c S B
f NIC f IC f S

e ⊆ − ≤
≥ −  

6   Experiments and Discussion 

We have used heuristics from social science that choose individuals with highest 
degree and betweenness [21] as the initiators, and compared our method’s perfor-
mance with theirs. To show the advantages of ELAS, three different network 
models were tested (Table 2). For each of them different parameter settings were 
tested. For each setting 30 networks were built and diffusion was simulated for 30 
randomly chosen thresholds. So for each setting 900 simulations were done. 

After building a network, every node chose a random threshold. Then some 
nodes were randomly selected as the minority and were given opinions opposite to 
the others. Then different strategies for link addition were used and their impacts 
were measured. The diffusion continued until no new node could be activated. 
Society was composed of 400 individuals and minority was 10% of them. The 
budget limit was 40 (i.e. each minority member could initiate one link on aver-
age). For each simulation Social Impact of Minority that is the number of active 
nodes at the end of the simulation, was recorded. 
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6.1   Budget Impact on Diffusion and Trends of Diffusion  

Fig. 1.a illustrates the effect of budget on success of link addition for ER network 
whose structural details will be discussed later in this section. The vertical axis 
shows the number of active individuals at the final time-step of diffusion. As ex-
pected, increase in budget would increase the social impact of Minority. It is clear 
that performance of ELAS is better than degree-based and betweenness-based 
strategies. Further simulations showed this dominance exists for all mentioned 
network types and their different parameter settings. 

Fig. 1.b compares the methods in different time steps for an ER network. Data 
is gathered for budget 40. Performances of degree and betweenness heuristics’ are 
close to each other. As it is illustrated, ELAS outperform them in all time steps.  

6.2   Effect of Network Structure on Diffusion Process 

Experimental results along with analytical demonstrations show the better perfor-
mance of ELAS in comparison with other link addition strategies. In this part, a 
closer look is taken to ELAS for finding the structural factors that affects its  
performance. For this goal, different syntactical networks were built and ELAS 
performance was tested on them.  

Table 2 Network models and their parameter list 

Network Type Parameters 

Erd ss–Rényi (ER) P: edge probability 

Small World (SW) A: average degree, R: rewiring probability

Scale Free (SF) A: average degree, S: initial seed 

 

a. 
 

b. 

Fig. 1. Comparison of ELAS performance with degree and betweenness based strategy in 
an instance of ER networks a. At the final time step of simulation. b. During simulation for 
B = 40. 
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6.2.1   Erdős–Rényi Network 

Erdős–Rényi network model (ER) is the most studied random network model in 
which the probability of relation between each individual pair is p . Fig. 2 shows 

the sensitivity of presented method to p . When p is very low the graph is loosely 

connected which hinders the cascade of influence. As p increases the giant graph 

component appears and facilitates the diffusion. Since lnp n n=  is a sharp thre-

shold for the presence of giant component [20] at this point (0.01 for 400 nodes) 
the effectiveness of the method is maximized. Increasing p  creates high degree 

nodes which are harder to influence. These nodes decrease ELAS influence on the 
whole network. 

Fig 2 also illustrates the difference between ELAS and the better of the two 
other strategies. As it is clear, the dominance of ELAS decreases as the graph 
becomes more connected. It can be interpreted as when graph become denser 
every link addition strategy becomes ineffective. 

6.2.2    Scale Free Network 

It has been shown [21] that many real world networks are scale free (SF). Based 
on this, [22] proposed preferential attachment process for generating SF networks. 
This model has two parameters which are 0N  and k , initial seed of process and 

average degree of network respectively.  
The process starts with  0N  isolated nodes and at every time step a new node is 

added by making k  new links. The probability that a link connects j to node i  is 

linearly proportional to the degree of i [21]: ( ) deg 1 (deg 1)i ll
P i j→ = + +

where ݀݁݃is the degree of node i.  
 

 

Fig. 2 Effect of network structure on the success of the method for ER network 

Fig. 3.a shows the performance of ELAS for different SF networks that have 
been constructed using different parameters. In this set of experiences 5 value for 
both 0N and k  have been used. Since for making a SF network we should have 
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0N k≥  no experience has been done for 0N k< which is shown by zero in Fig 3.a. 

This reduces the number of different settings for networks from 25 to 15. 
Fig 3.b shows the same diagram as Fig 3.a except that it emphasize on the ef-

fect of network seed. In each ribbon average degree is constant. In the region of 
experiences where 0N k≥ , ribbons are flat which shows that 0N  does not have 

significant impact on ELAS performance. On the other hand ribbons with identical 
network seed (Fig 4.c) demonstrate that average degree extremely change the 
number of active individuals at the end of diffusion with inverse relation. 

6.2.3   Small World Network 

High clustering coefficient (CC) and low average shortest path length (L) are two 
important characteristics of social relation networks [21]. Small world networks 
are networks that simultaneously exhibit high CC and low L [23]. Watts and Stro-
gatz model [23] is the most well-known model of small world networks (SW). It 
has two parameters which are average degree of the network and rewiring proba-
bility of edges. The process begins with a ring lattice with n vertices and k edges 
per vertex. Then edges are rewired with probability p. 

Fig. 4.a illustrates the effect of both parameters on ELAS. Fig. 4.b and Fig. 4.c 
are the same as Fig. 4.a diagram but they illustrate the effect of rewiring probabili-
ty and average degree respectively. According to flat ribbons of Fig. 4.b, rewiring 
probability does not have a significant impact on the final result. But it is clear 
from Fig. 4.c that like previous models, average degree has inverse relation with 
the final outcome.  

 
 

a. b. c. 

Fig. 3 Effect of network structure parameters on the success of the method for SF networks 
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which has impact on ELAS. Further investigations on structural properties of stu-
died networks led to interesting results. Fig. 6.a shows average degree distribution 
of 30 networks that have been used in Fig. 5. As expected [21], ER network has 
Poisson like degree distribution with the mean around 4 (Fig. 6.a) and SF network 
presents power law distribution (Fig. 6.b). Since the process of building SW net-
work begins with lattice of degree 4 and rewiring probability is low (0.01) the SW 
network has impulse like degree distribution around 4 (Fig. 6.c). 

Fig. 7 shows the degree distribution of the sets that have been activated by the 
minority using ELAS in different network structure of Fig. 5. Degree distribution 
of activated set for ER network is like Poisson distribution with mean 4 (Fig. 
7.a).The activated set in SF network (Fig. 7.b) has high density in lower degrees in 
contrast with impulse like function of SW network (Fig. 7.c).  

 

a. b. c.

Fig. 4 Effect of network structure parameters on the success of the method for SW  
networks 

 

Fig. 5 Effect of network structure for same average degree 

From these distributions, it can be concluded that the power of ELAS in SF 
networks originates from highly available individuals that can be influenced easily 
not the power of special persons or hubs. This is confirmed by the fact that SW 
network is in last place in Fig. 5, because SW mostly consists of nodes with de-
gree of 4 which is higher than degree of available nodes in SF and ER networks.  
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 a.                         b.                      c. 

Fig. 6 Degree distribution of different network structure 

 
   a.                        b.                          c. 

Fig. 7 Degree distribution of activated set for different network structure 

7   Discussion and Future Directions 

The drastic success of ELAS over other heuristics seems suspicious at the first 
look. So it should be mentioned that this performance is gained by spending more 
time for finding the initiators in ELAS. This fact becomes critical when we want 
to run several experiments for understanding the effect of structure on ELAS per-
formance. In fact our experiments are infeasible for even 500 individuals.  

Structure of the greedy algorithm seems neat and efficient but when it comes to 
the implementation part the main question is how to find ( )f S . As we stated ear-

lier (IV.a.) ( )f S  is the expected value of the number of active individuals at the 

end of the diffusion process. So the very primitive approach to estimate ( )f S  is to 

run the diffusion process for many times starting with initiator set S  and take the 
average number of active nodes as the value of ( )f S . This was the method that  
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used by Kempe et al. [7]. However they mentioned that finding ( )f S  is the open 

problem for future research. After this first solution for ( )f S  estimation, almost 

all efforts focused to explore the other aspects of cascading and researchers pre-
ferred to suppose that ( )f S  is known by an oracle.  

Using simple averaging as the method of computing ( )f S  will takes hours on a 

modern server to select 50 seeds in a moderate sized graph (15K nodes and 31K 
edges) while it becomes infeasible for larger graphs [24]. Even these numbers are 
too large for running several experiments for exploring structural effects.  

Some recent works have developed algorithms for speeding up ( )f S  calcula-

tion with several approaches. The one that is used here is Lazy Forward Evalua-
tion which is introduced in [19] which actually avoids ( )f S computing. Leskovec 

et al. [19] has reported the 700 times speed up in experiments. Very recent me-
thods [24], [25] are developed separately for LTM and ICM. Both of these me-
thods have viewed the influence propagation locally and tried to estimate ( )f S  as 

the aggregation of these local cascades. Simulation results show that the final 
outcomes of greedy algorithm based on these methods for ( )f S estimation are 

always among best results [24], [25].  
Another important extension of the naïve influence propagation is the setting in 

which multiple minorities exist in the society and compete with each other for 
adding new links and change the crowd behavior. This domain is very novel even 
in the context of finding K-MIP which as mentioned in IV.a is simpler than link 
addition problem. They are some recent works which addressed competitive set-
ting for K-MIP problem [26], [27].  

8   Conclusion 

Changing belief of the majority of individuals by means of a minority was the 
main focus of this work. Each individual’s belief is emerged from his neighbors 
by a simple rule that has selfishness in its nature. Based on this rule belief change 
propagates through the society. Minority want to change the belief of majority by 
making new relation with them. We leave the competitive scheme in which there 
exist many minorities competing on influence maximization, for future works. 

A greedy algorithm was presented for finding the best new relation and its per-
formance was compared with different relation initiation strategies. Our method, 
ELAS, outperformed them along with its rigorous mathematical background that 
shows its performance is within the specified distance of the optimal solution.  

Also the effect of structure on ELAS was measured and it was found out that 
degree of each individual is the main parameter that impact ELAS with an inverse 
relation. In addition it was shown that in a population with the same average de-
gree, number of available easily-influenced individuals is more important than 
influencers for the success of diffusion.  
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