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Abstract
Structured estimation methods, such as LASSO, have re-
ceived considerable attention in recent years and substantial
progress has been made in extending such methods to gen-
eral norms and non-Gaussian design matrices. In real world
problems, however, covariates are usually corrupted with
noise and there have been efforts to generalize structured es-
timation method for noisy covariate setting. In this paper we
first show that without any information about the noise in
covariates, currently established techniques of bounding sta-
tistical error of estimation fail to provide consistency guar-
antees. However, when information about noise covariance
is available or can be estimated, then we prove consistency
guarantees for any norm regularizer, which is a more gen-
eral result than the state of the art. Next, we investigate
empirical performance of structured estimation, specifically
LASSO, when covariates are noisy and empirically show that
LASSO is not consistent or stable in the presence of additive
noise. However, prediction performance improves quite sub-
stantially when the noise covariance is available for incorpo-
rating in the estimator.

1 INTRODUCTION
The study of regression models with error in features pre-
dates the twentieth century [13]. In the simplest setting for
such models, we assume that instead of observing (xi, yi)
from the linear model yi = 〈β∗,xi〉+εi, (zi, yi) is observed,
where zi = f(xi,wi) is a noisy version of xi corrupted by
wi. The form of function f which we consider in this paper
is additive noise. The overall noisy measurement model is:

yi = 〈β∗,xi〉+ εi, β∗ ∈ Rp(1.1)
zi = xi + wi.(1.2)

Given {(zi, yi)}ni=1 we want to compute β̂, which is l2
consistent, i.e., for the error vector ∆ = β̂ − β∗, ‖∆‖2 ≤
g(n) where g(n) → 0 for n → ∞. Further, we also want to
prove non-asymptotic guarantees for statistical recoevery.

Error in features is known with different names in the
literature such as measurement error, errors-in-variables, or
noisy covariates, and has applications in various areas of
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science and engineering [5, 13, 19]. The importance of
measurement error models is amplified in the era of big data,
since large scale and high dimensional data are more prone to
noise [14, 19]. In high dimensional setting where p� n the
classical assumptions required for treatment of measurement
error break down [5, 13] and new estimators and methods are
required to consistently estimate β∗. Such challenges have
revived measurement error research and several papers have
addressed high dimensional issues of those models in recent
years [3, 12, 14, 19, 20].

Many recent papers have reported unstable behavior of
standard sparse estimators like LASSO [22] and Dantzig se-
lector (DS) [6] under measurement error. These observa-
tions, led to suggestion of new estimators [3, 12, 14, 19, 20]
for which some knowledge of noise wi, and/or β∗ are re-
quired for consistent estimation. None of the existing esti-
mators is able to consistently estimate parameters from noisy
measurements without noise information, but there is still no
theoretical result to show inachievability.

In this paper, we consider regularized (LASSO type)
estimators with general norms R(·), when the design matrix
X , with xi as its rows, is corrupted by additive independent
sub-Gaussian noise matrix W (precise definition of sub-
Gaussian random variable follows). Therefore, the additive
noise model in matrix form becomes:

Z = X +W, Z,X,W ∈ Rn×p(1.3)
y = Xβ∗ + ε, y,β, ε ∈ Rp,

where matrix Z is the noisy observation (design) matrix with
zis as its rows which follow additive noise model of (1.2) and
y is generated from linear model of (1.1). Our regularized
estimator takes the form:

β̂ = argmin
β∈C

L(Z,y,β) + λR(β),(1.4)

where L is a loss function, C ⊆ Rp and R(·) is a general
norm used for regularization and induces some structure
(like sparsity) over the unknown parameter β∗ .

To the best of our knowledge none of the previous
work in high dimensional measurement error literature (see
Section 2 on the related work) has considered structures
other than sparsity, i.e. R(β∗) = ‖β∗‖1. However, other
structures of β∗ are of interest in different applications
[1, 2, 7, 15]. These structures are formalized as having a
small value for R(β∗) where R is a suitable norm.
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In this paper, we first study the properties of the esti-
mator (1.4) where no knowledge of the noise W is avail-
able. This is in the sharp contrast to the recent literature
[12, 14, 19] where the noise covariance Σw = E[WTW ] ∈
Rp×p or an estimate of it, is required as a part of estimator.
[14] uses a maximum likelihood estimator, which always re-
quires estimation of Σw in order to establish restricted eigen-
value conditions [18, 24, 23] on the estimated sample covari-
ance Σx. [12] used orthogonal matching pursuit to recover
the support of β∗ without any knowledge of Σw, but it can
not establish l2 consistency without estimating Σw directly.
Our analysis of estimator (1.4) when Σw is unknown char-
acterizes the upper bound on ‖∆‖2 ≤ g(n) + c(Σw), where
g(n) decays by the rate ofO(1/

√
n) but the constant c(Σw),

is not vanishing. Thus, the upper bound on the statistical
error does not decay to zero, but remains bounded within a
norm ball. Second, we prove that when Σw is available, the
regularized estimators like (1.4) are consistent which gener-
alizes the recent work of [14] for the case of R(.) = ‖.‖1.

We study the behavior of high dimensional estimators
in the presence of the noise and present three key findings.
First, we exploit the current bounding techniques [2, 15]
and show that the error of regularized estimators in the
presence of noise based on current techniques can only be
bounded by two terms one of which shrinks as the number
of samples increases and the other one is irreducible and
depends on the covariance of the noise. Second, when an
estimate of the noise covariance is known, we show that
existing estimators [15, 22] provide consistent estimates for
any norm regularization R. Our analysis generalizes the
existing estimators in the noisy setting, which have only
considered sparse regression and l1 norm regularization.
Finally, using LASSO as the estimator we empirically show
that in the presence of noise in covariates, even estimation
followed by significant test fails to detect all important
features, whereas our estimator, having knowledge of noise
covariance, captures relevant features more accurately.

The rest of the paper is organized as follows. First we
introduce the notation and preliminary definitions. Next, we
briefly review the related work in Section 2. In Section
3 we formulate the structured estimation problem under
noisy designs assumption using regularized optimization
and establish non-asymptotic bounds on the error for sub-
Gaussian designs and sub-Gaussian noise. In Section 4, we
prove consistency of estimators when an estimate Σ̂w of
noise covariance is known. We present supportive numerical
simulation results in Section 5 and conclude in Section 6.
NOTATION AND PRELIMINARIES :
We denote matrices by capital letters V , random variables
by small letters v and random vectors with bold symbols
v. Throughout the paper cis and C are positive constants.
Consider following norm of random variable v: ‖v‖ψ2 =
supp≥1 p

−1/2(E(|v|p))1/p. Then v is sub-Gaussian if

‖v‖ψ2
≤ K2 for a constant K2 [24]. Random vector v ∈ Rp

is sub-Gaussian if the one-dimensional marginals 〈v, v〉 are
sub-Gaussian for all v ∈ R. The sub-Gaussian norm of v
is defined as ‖v‖ψ2 = supv∈Sp−1 ‖〈v, v〉‖ψ2 . We abuse
notation and use shorthand v ∼ Subg(0,Σv,Kv) for zero
mean sub-Gaussian random vector with covariance Σv and
parameter Kv, although keeping in mind that no other mo-
ments, nor the exact form of the distribution function is
known. For any set A ∈ Rp, the Gaussian width [25] of
the set is defined as: ω(A) = E(supu∈A〈g, u〉), where the
expectation is over g ∼ N(0, Ip×p), a vector of indepen-
dent zero-mean unit-variance Gaussians. We define the min-
imum and maximum eigenvalues of a matrix M restricted
to set A ⊆ Sp−1 as λmin(M |A) = infu∈A uTMu, and
λmax(M |A) = supu∈A uTMu respectively.

2 RELATED WORK
Over the past decade considerable progress has been made
on the sparse and structured estimation problems for linear
models. Such models assume that the observed pair (xi, yi)
follows yi = 〈β∗,xi〉 + εi, where β∗ is sparse or suitably
structured according to a norm R [1, 2, 7, 15]. In real world
settings, often covariates are noisy, and one observes “noisy”
versions zi of covariates xi corrupted by noise wi, where
zi = f(xi,wi). Two popular model for f are additive,
zi = xi + wi, and multiplicative noise zi = xi ◦ wi

[12, 14, 19] where ◦ is the Hadamard product. Two common
choices of wi for additive noise case are uniformly bounded
[3, 19] and centered subgaussian [12, 14]. In noisy models,
a key challenge is to develop estimation methods that are
robust to corrupted data, particularly in the high-dimensional
regime. Recent work [12, 19] has illustrated empirically
that standard estimators like LASSO and DS perform poorly
in the presence of measurement errors. Thus, many recent
papers proposed modifications of LASSO, DS or Orthogonal
Matching Pursuit (OMP) [3, 12, 14, 19, 20] for handling
noisy covariates. However, such estimators may become
non-convex [14], or require extra information about optimal
β∗ [12, 14]. Further, most of proposed estimators for sub-
Gaussian additive noise require an estimate of the noise
covariance Σw in order to establish statistical consistency
[3, 12, 14, 20] or impose more stringent condition, like
element-wise boundedness on W [3, 19].

Recent literature on regression with additive measure-
ment error in high dimension has focused on sparsity, Table
1 presents key recent works in this area. The first paper in
this line of work [19] introduces matrix uncertainty selector
(MU) which belongs to constraint family of estimators. As
the first attempt for addressing estimation with measurement
error in high dimension, MU imposes restrictive conditions
on noise W , namely each element of matrix W needs to be
bounded. It worth mentioning that MU does not need any
information about noise covariance Σw and as presented in
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Table 1: Comparison of estimators for design corrupted with additive sub-Gaussian noise

Name Estimator Conditions Bound for ‖∆‖2

MU [19]
min ‖β‖1 s.t.

‖ 1
n
ZT (y − Zβ)‖∞ ≤ (1 + δ)δ‖β‖1 + τ

‖ 1
n
ZT ε‖∞ ≤ τ

∀Wij , |Wij | ≤ δ
c
√
s(δ + δ2)‖β∗‖1 + C

√
s log p

n

IMU
[20]

min ‖β‖1 s.t.
‖ 1
n
ZT (y − Zβ) + Σ̂wβ‖∞ ≤ µ‖β‖1 + τ

σ2
j = 1

n

∑n
i=1 E(W 2

ij)

Σw = diag(σ1, . . . , σp)

wi ∼ Subg(0,Σw,Kw)
C‖β∗‖1

√
s log p

n

NCL
[14]

min 1
2
βT
(
1
n
ZTZ − Σw

)
β − 1

n
βTZTy

+λ‖β‖1 s.t. ‖β‖1 ≤ b1
wi ∼ Subg(0,Σw,Kw) max{c

√
sλ,C‖β∗‖2

√
s log p

n
}

NCC
[14]

min 1
2
βT
(
1
n
ZTZ − Σw

)
β − 1

n
βTZTy

s.t. ‖β‖1 ≤ b2
wi ∼ Subg(0,Σw,Kw) C‖β∗‖2

√
s log p

n

OMP
[12]

OMP for recovery of support indecies S:
β̂S = (ZT

S ZS − ΣS
w)(ZT

S y)

wi ∼ Subg(0,Σw,Kw)
∀β∗i 6= 0

|β∗i | ≥ (c‖β‖2 + C)
√

log p
n

(c+ C‖β∗‖2)
√

s log p
n

Table 1, it is not consistent, i.e. c
√
s(δ + δ2)‖β∗‖1 term in

the upper bound is independent of the number of samples n.
This theme repeats in the literature: when Σw is available
proposed estimators are consistent otherwise there is no l2
recovery guarantee.

Same authors has proposed improved matrix uncertainty
selector (IMU) [20] which assumes availability of the diag-
onal matrix Σ̂w as the covariance of the noise and use it
to compensate the effect of the noise. The compensation
idea also recurs in the literature where one mitigates ZTZ
by subtracting Σw and as the result the estimator becomes
consistent. Note that both MU and IMU are modification
of DS where ‖β‖1 appears in both constraint and objective
of the program. For IMU each row of noise matrix wi is
sub-Gaussian and independent of wj , xi and εi and off di-
agonal of Σw are zero i.e., Wij are uncorrelated. Following
IMU all subsequent work assume sub-Gaussian independent
noise and MU and [3] are only estimators that allows general
dependence in noise.

Loh and Wainwright [14] proposed a non-convex mod-
ification of LASSO (NCL) [22] along with constraint ver-
sion of it (NCC) which are equivalent by Lagrangian duality
(Table 1). In both estimators they substitute the quadratic
term XTX of the LASSO objective with ZTZ −Σw which
makes the problem non-convex. An interesting aspect of
this method is that although a projected gradient algorithm
can only reach a local minima, yet any such local minima
is guaranteed to have consistency guarantee. Note that for
the feasibility of both objectives, [14] requires extra infor-
mation about the unknown parameter β∗, particularly b1 and
b2 should be set to a value greater than ‖β∗‖1.

In [12], Chen and Caramanis use the OMP [23] for sup-
port recovery of a sparse regression problem without know-
ing the noise covariance. They established non-asymptotic
guarantees for support recovery while imposing element-

wise lower bound on the absolute value of the support. How-
ever, for achieving l2 consistently, [12] still requires an es-
timate of the noise covariance Σw, which is in accordance
with the requirements of other estimators mentioned above.

Although literature on regression with noisy covariates
has only focused on sparsity, the machine learning com-
munity recently has made tremendous progress on struc-
tured regression that has led to several key publications.
[15] provided a general framework for analyzing regu-
larized estimators with decomposable norm of the form
minβ L(β; y, X)+λR(β), and established theoretical guar-
antees for Gaussian covariates. A number of recent papers
[27, 28] have generalized this framework for analyzing es-
timators with hierarchical structures [9], atomic norms [27]
and graphical model structure learning [28]. Recently, [2]
established a framework for analyzing regularized estimators
with any norm R and sub-Gaussian covariates. On the other
hand for constraint estimators [8] has recently generalized
the DS for any norm R.

3 STRUCTURED ESTIMATION
We consider the linear model, where covariates are corrupted
by additive noise yi = 〈xi,β∗〉 + εi, zi = xi + wi,
where xi ∼ Subg(0,Σx,Kx), εi ∼ Subg(0, σε,Kε) are
i.i.d and also independent from one another. Error vector
wi ∼ Subg(0,Σw,Kw) is independent from both xi and εi.
Since zi and xi are independent, we have Σz = Σx + Σw

and zi ∼ Subg(0,Σz,Kz) for Kz ≤ c1Kx + c2Kw. In
matrix notation, given samples {(xi, yi)}ni=1, we obtain

y = Xβ∗ + ε, Z = X +W .(3.5)

The regularized family of estimators in high dimensions is
generally characterized as

(3.6) β̂r = argmin
β

1

2n
‖y − Zβ‖22 + λrR(β),
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where λr > 0.
In noiseless scenario, i.e. Z = X , (3.6) is called

Regularized M -estimators (RME) [2, 15]. R encodes the
structure of β∗. For example, if β∗ is sparse, i.e. has many
zeros, R(β) = ‖β‖1 and RME (3.6) corresponds to the
LASSO problem [22]. When Z = X , statistical consistency
of RME has been shown for general norms [2]. In the next
section, we illustrate that the analysis of [2] can be conducted
on RME with noisy design Z = X + W , with similar
assumptions, but consistency cannot be guaranteed.

3.1 STATISTICAL PROPERTIES For noiseless de-
signs, considerable progress has been made in recent years
in the analysis of non-asymptotic estimation error ‖∆‖2 =

‖β̂ − β∗‖2 [2, 4, 8, 15, 26]. In this paper, we follow the es-
tablished analysis techniques, while discussing some of the
subtle differences in the results obtained due to presence of
the noise in covariates. First we discuss the set of directions
which contain the error ∆.

Lemma 1 (Error Set [2]) Choosing λr ≥ αR∗( 1
nZ

T (y −
Zβ∗)) for some α > 1, the error vector ∆ of RME (3.6)
belongs to the restricted error set Er [2]
(3.7)

Er =

{
∆ ∈ Rp

∣∣∣R(β∗ + ∆) ≤ R(β∗) +
1

α
R(∆)

}
We name the cone of Er as Cr = Cone(Er).

Proof is straightforward and only depend on the optimal-
ity of β̂. Next, we discuss the Restricted Eigenvalue (RE)
condition on the design matrix that almost all of the high-
dimensional consistency analysis relies on [2, 7, 8, 14, 15,
19, 20].

Definition 1 (Restricted Eigenvalue) The design matrix
Z ∈ Rn×p satisfies the restricted eigenvalue condition on
the spherical cap A ⊂ Sp−1, where Sp−1 is the unit l2
sphere, if 1√

n
infv∈A ‖Xv‖2 ≥ κ > 0 or in other words,

for γ =
√
nκ:

(3.8) inf
v∈A
‖Xv‖2 ≥ γ > 0 .

Intuitively RE condition means that although for p� n
the matrix X is not positive definite and the corresponding
quadratic form is not strongly convex but in the certain desir-
able directions represented by A, ||Xv‖22 is strongly convex.
In RME these are error vector ∆ directions formulated as
Ar = Cr ∩ Sp−1.

For noiseless case Z = X when xi are Gaussian or
sub-Gaussian RE condition is satisfied with high probability
after a certain sample size n > n0 is reached, where n0

determines the sample complexity [2, 15]. Interestingly,
recent work has shown that the sample complexity is the
square of the Gaussian width of A, n0 = O(ω2(A)) [2].

Theorem 1 (Deterministic Error Bound [2, 8]) Assume
λr ≥ αR∗( 1

nZ
T (y − Zβ∗)) for some α > 1 and sample

size n > n0 such that RE condition (3.8) holds over the error
directions Ar = Cr ∩ Sp−1, then following deterministic
bound holds for RME:

(3.9) ‖∆r‖2 ≤
α+ 1

α

λr
κ

Ψ(Cr) ,

where Ψ(C) = supu∈C
R(u)
‖u‖2 is the restricted norm

compatibility constant.

Next, we analyze the additive noise case, by (i) obtain-
ing suitable bounds for λ, which sets the scaling of the er-
ror bound, and (ii) the sample complexity n0 for which the
RE condition is satisfied with high-probability even with a
noisy design Z. Without loss of generality, we will assume
‖β∗‖2 = 1 for the analysis, noting that the general case fol-
lows by a direct scaling of the analysis presented.

3.2 RESTRICTED EIGENVALUE CONDITION For
linear models with the square loss function, RE condition
is satisfied if (3.8) holds, where A ⊆ Sp−1 is a restricted
set of directions. Recent literature [2, 7, 15] has proved that
the RE condition holds for both Gaussian and sub-Gaussian
design matrices. In the following theorem we show that RE
condition holds for additive noise in measurement with high
probability:

Theorem 2 For the design matrix of the additive noise in
measurement Z = X + W where independent rows of
X and W are drawn from xi ∼ Subg(0,Σx,Kx), and
wi ∼ Subg(0,Σw,Kw), for absolute constants η, c > 0,
with probability at least (1− 2 exp(−ηω2(A))), we have:
(3.10)

inf
v∈A

1

n
‖Zv‖22 ≥ λmin(Σx + Σw|A)

(
1− cω(A)√

n

)
,

where A ⊆ Sp−1.

Proof. Note that Z = X + W and since rows of X and W
are centered independent and sub-Gaussian, as mentioned in
section 3 rows of Z are also sub-Gaussian with following
distribution zi ∼ Subg(0,Σx + Σw, cKx +CKw). Now we
apply Theorem 10 of [2] for RE condition of independent
anisotropic sub-Gaussian designs and result follows.

In the noisy design problem, our quantity of interest is the
Gaussian width ω(Ar). For example, L1 norm in LASSO
is a simple special case of this model where β∗ is s-sparse
and we obtain ω(A) ≤

√
s log p [2, 7]. Further, Group-

LASSO is the generalization of LASSO to group-sparse
norms, where one considers that the dimensions 1, . . . , p are
grouped into nG disjoint groups each of size at most mG,
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and β∗ consists of sG groups. In this scenario, one obtains
ω(A) ≤ √mG +

√
sG log nG [9, 21]. The k-support norm

was introduced in [1] and [8] provided recovery guarantees
for k-support norm for linear models. It was shown in [8]
that the Gaussian width of the unit ball of the k-support

norm is bounded as ω(Ω‖·‖spk ) ≤
(√

2k log
(
pe
k

)
+
√
k
)

.
For related results we refer the readers to [10]

3.3 REGULARIZATION PARAMETER The statistical
analysis of RME requires λ ≥ αR∗( 1

nZ
T (y − Zβ∗)). For

the noiseless case, we note that y−Zβ∗ = y−Xβ∗ = ε, the
noise vector, so thatR∗( 1

nZ
T (y−Zβ∗)) = R∗( 1

nX
T ε). Us-

ing the fact that X and ε are sub-Gaussian and independent,
recent work has shown that E[R∗( 1

nX
T ε)] ≤ c√

n
ω(ΩR),

where ΩR = {u ∈ Rp|R(u) ≤ 1}. For l1 norm, i.e.,
LASSO, ΩR is the unit l1 ball, and ω(ΩR) ≤ c2

√
log p. Here

we have the following bound on λ:

Theorem 3 Assume that X and W are matrices with iid
rows drawn from zero mean sub-Gaussian distributions.
Then,
(3.11)

E

[
R∗
(

1

n
ZT (y − Zβ∗)

)]
≤ νR(β∗) +

Cω(ΩR)√
n

,

where ν = supu∈ΩR
‖Σ1/2

w u‖22, and C > 0 is a constant
dependent on the sub-Gaussian norms of the X and W .

Proof. Noting Z = X +W we can see that
(3.12)
ZT (y−Zβ∗) = ZT (y−Xβ∗−Wβ∗) = ZT ε−ZTWβ∗ .

Note that there is an additional term ZTWβ∗ as a conse-
quence of the noise. Now, by triangle inequality
(3.13)

R∗(
1

n
ZT (y − Zβ∗)) ≤ R∗( 1

n
ZT ε) +R∗(

1

n
ZTWβ∗) .

By existing analysis, we know that E[R∗( 1
nZ

T ε)] ≤
c1√
n
ω(ΩR), along with suitable concentration around the ex-

pectation [2]. Therefore, the new component of the analysis
focuses on the second term R∗( 1

nZ
TWβ∗), which is a con-

sequence of the noise. For simplicity, we consider the case
when X is an isotropic bounded sub-Gaussian vectors such
that Σx = Ip×p, with sub-Gaussian normK1, andW is com-
posed of independent rows sampled from Subg(0,Σw,Kw).
The following lemma provides a suitable upper bound for
the expectation of the second term R∗( 1

nZ
TWβ∗). Note

that lemma can be easily extended to anisotropic bounded
sub-Gaussian X .

Lemma 2 Assume that the statistical parameter β∗ has unit
L2 norm, and the matrices X and W consist of isotropic

bounded sub-Gaussian entries with sub-Gaussian norm K1.
Then, the following upper bound holds for the expectation.

EX,W

[
R∗
(

1

n
ZTWβ∗

)]
≤ R(β∗)ν +K1c

ω(ΩR)√
n

+R(β∗)

[
η0Λmax(Σw)ω(ΩR)√

n

]
(3.14)

where ν = supu∈ΩR
‖Σ1/2

w u‖22 and c, c2 > 0 are constants.

Proof of Lemma: Note that

E

[
R∗
(

1

n
ZTWβ∗

)]
≤ E

[
R∗
(

1

n
XTWβ∗

)]
+ E

[
R∗
(

1

n
WTWβ∗

)]
.

(3.15)

We upper bound the two terms as follows. First, consider the
first term.

EX,W

[
R∗
(

1

n
XTWβ∗

)]
= EW

[
1

n
‖Wβ∗‖2

]
EX

[
R∗
(
XTu

)]
(3.16)

where u = Wβ∗/‖Wβ∗‖2 ∈ Sp−1 is an unit vector and
since X and W are independent the expectation factorizes.
Since Wβ∗ and XTu are sub-Gaussian vectors with i.i.d.
rows (Wβ∗)i and (XTu)i, each of which is sub-Gaussian
with sub-Gaussian norm smaller than K1, we have:

EW

[
1

n
‖Wβ∗‖2

]
≤ 1

n
K1

√
n(3.17)

EX

[
R∗
(
XTu

)]
≤ cω(ΩR) ,(3.18)

so that

(3.19) EX,W

[
R∗
(

1

n
XTWβ∗

)]
≤ K1c

ω(ΩR)√
n

Next, we consider the second term, and note that

EW

[
R∗
(

1

n
WTWβ∗

)]
=

1

n
EW

[
sup
u∈ΩR

〈Wu,Wβ∗〉
](3.20)

(a)
=

R(β∗)

n
EW

[
sup
u∈ΩR

〈Wu,Wv〉
]

(3.21)

(b)
≤R(β∗)EW

[
sup
u∈ΩR

1

n
‖Wu‖22

]
(3.22)

(3.23)

where (a) follows from noting that v = β∗/R(β∗) ∈
ΩR, and (b) follows from the inequality 2〈Wu,Wv〉 ≤
‖Wu‖22 + ‖Wv‖22, and taking supremum over all u ∈ ΩR.
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[24] shows that ifW consists of i.i.d. sub-Gaussian rows
wi ∼ Subg(0,Σw,Kw), then

(3.24)
∣∣∣∣ 1n‖Wu‖22 − ‖Σ1/2

w u‖22
∣∣∣∣ ≤ max(δ, δ2) ∀u ∈ ΩR

with probability at least 1 − 2 exp(−η1τ
2), where δ =

η0Λmax(Σw)ω(ΩR)√
n

+ τ√
n

, and η0, η1 are constants dependent
on Kw. Therefore, we obtain

(3.25) sup
u∈ΩR

1

n
‖Wu‖22 ≤ ν+

η0Λmax(Σw)ω(ΩR)√
n

+
τ√
n
,

with probability at least 1 − 2 exp(−η1τ
2), where ν =

supu∈ΩR
‖Σ1/2

w u‖22.
Therefore,

(3.26)

E

[
R∗
(

1

n
WTWβ∗

)]
≤ R(β∗)

[
ν +

η0Λmax(Σw)ω(ΩR)√
n

]

Remark 1: For the intuitive interpretation of (3.26),
note that when the number of samples n increases sample
covariance converges as 1

nW
TW → Σw = I , therefore

E
[
R∗
(

1
nW

TWβ∗
)]

= R∗ (β∗) which is not decaying by
number of samples. Moreover, R∗ (β∗) = supu6=0

〈β∗,u〉
R(u) =

R(β∗) supu6=0
〈β∗/R(β∗),u〉

R(u) = R(β∗) supu∈ΩR
‖u‖22

which is exactly RHS when n→∞.
Remark 2: Theorem 3 illustrates that λ does not decay

to 0 with increasing sample size, but approaches the operator
norm of the covariance matrix Σw. Particularly, when the
noise W is i.i.d. with variance σ2

w, the error is bounded
above by σ2

w.
Remark 3: The main consequence of Theorem 3 is to

illustrate that the existing technique for proving consistency
for the statistical error ‖∆‖2 of the noiseless estimator fails
for RME. We note that in (3.9), when n > n0, κ is a
positive quantity that approaches the minimum eigenvalue of
Σx +Σw with increasing sample size. Therefore, the scaling
of λ determines the error bounds. Theorem 3 proves that
the error bound can be as small as the variance of the noise.
When W = 0, consistency rates are exactly the same as the
noiseless case [2].

4 CONSISTENCY WITH NOISE COVARIANCE
ESTIMATES

Theorem 3 shows that with no informations about the noise,
current analyses can not guarantee statistical consistency
for noisy covariates model. At the same time, appearance
of Σw in the upper bound of (3.11), suggests the use of
noise covariance estimate to make the estimators consistent.
Motivated by this observation and recent line of work [14,

11], we focused on scenarios in which an estimate of the
noise covariance matrix Σ̂w is available, e.g., from repeated
measurements Z for the same design matrix X , or from
independent samples of W . We follow [14] and assume that
independent observation from zero mean noise matrix W is
possible, from which we estimate the sample covariance as
Σ̂w = 1

nW
T
0 W0. Having Σ̂w in hand we modify RME in

the following way. Consider the matrix Γ̂ = 1
nZ

TZ − Σ̂w

where Σ̂w compensates the effect of noise W , then:
(4.27)

Noisy RME: β̂r = argmin
R(β)≤b

βT Γ̂β − βT
1

n
ZTy + λR(β) ,

Program (4.27) can be non-convex, because Γ̂ =
1
nZ

TZ−Σ̂w may be indefinite. In such a situation the objec-
tive is unbounded below. So we need to impose further con-
straint of the form R(β) ≤ b where for the feasibility of β∗

we set b = R(β∗). Our consistency guarantee considers the
global solution β̂r of the non-convex problem (4.27). The
relation between global and local solutions has been investi-
gated in [14] for the special case of l1 norm, and for general
norms we leave it for the future work. Note that (4.27) “ex-
tends” estimator of [14] for any norm, i.e., for R(·) = ‖ · ‖1,
(4.27) reduces to the objective of [14].

To show the statistical consistency of β̂ of noisy RME
(NRME), similar to the noiseless case, we need three ingre-
dients, i.e., restricted error set, bound on regularization pa-
rameter, and RE condition. The restricted error set of NRME
is determined by feasibility of β̂ as follows:

Ew =
{

∆ ∈ Rp
∣∣∣R(β∗ + ∆) ≤ R(β∗)

}
(4.28)

Note that the restricted error set of the noisy case is a subset
of that of noiseless case, i.e., Ew ⊆ Er. Following lemmas
shows bounds on λ and RE condition for NRME.

Lemma 3 (Bound on λ for NRME) With probability
1 − c1 exp {−min(c2τ

2, c3n)}, R∗
(

1
nZ

Ty − Γ̂β∗
)
≤

cω(ΩR)+Cτ√
n

.

Proof of this lemma follows the same line of proof of
Theorem 3, except in this case instead of R∗

(
1
nW

TWβ∗
)

we end up with R∗
(

1
nW

TWβ∗ − 1
nW

T
0 W0β

∗) where W
and W0 have same distributions and cancel out each others
effects in expectation. Thus the statement follows.

Lemma 4 (RE condition for NRME) For matrix Γ̂ =
1
nZ

TZ − Σ̂w in the NRME objective with Z = X + W
where independent rows of X and W are drawn from xi ∼
Subg(0,Σx,Kx), and wi ∼ Subg(0,Σw,Kw), and Σ̂w =
1
nW

T
0 W0, for absolute constants η, ci > 0, with probability
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at least (1− 2 exp(−ηω2(Aw))), we have:

inf
v∈Aw

vT Γ̂v(4.29)

≥ λmin(Σx|Aw)

(
1− c1

ω(Aw)√
n

)
− c2(λmin(Σw|Aw) + λmax(Σw|Aw))

ω(Aw)√
n

,

where Aw ⊆ Cone(Ew) ∩ Sp−1.

Proof. First we right the RE condition as follows:

inf
v∈Aw

vT Γ̂v(4.30)

=
1

n
XTX +

1

n
WTW − Σw + Σw − Σ̂w

=
1

n
XTX +

1

n
WTW − Σw + Σw −

1

n
WT

0 W0

Now we lower bound 1
nX

TX , 1
nW

TW − Σw, and upper
bound 1

nW
T
0 W0 − Σw. Note that rows of both W and

W0 are iid sampled from same distribution. Therefore, we
need lower and upper RE condition for 1

nW
TW − Σw.

The result can be instantiated from Theorem 12 of [2]
where we have following bounds with probability at least
(1− 2 exp(−ηiω2(Aw)))

(4.31)

λmin(Σx|Aw)

(
1− c1

ω(Aw)√
n

)
≤ inf

u∈Aw

1

n
‖Xu‖22

−c2λmin(Σx|Aw)
ω(Aw)√

n
≤ inf

u∈Aw

1

n
WTW − Σw

c2λmax(Σx|Aw)
ω(Aw)√

n
≥ sup

u∈Aw

1

n
WTW − Σw

Putting together the inequities the lemma follows.

Note that if we set Σw = 0 in (4.29) we get the established
RE condition of the noiseless case [2].

Corollary 1 When number of samples n passes n0 =
O(ω2(Aw)), the objective of NRME (4.27) becomes strongly
convex in the direction of restricted error set Ew.

The following theorem shows that NRME (4.27) consistently
estimates β∗.

Theorem 4 For the design matrix of the additive noise in
measurement Z = X + W where independent rows of X
and W are drawn from xi ∼ Subg(0,Σx,Kx), and wi ∼
Subg(0,Σw,Kw), and for the noise covariance estimate

Σ̂w = 1
nW

T
0 W0 discussed above we have the following

error bound for regularized estimator (4.27):

(4.32) ‖∆‖2 ≤
2cΨ(Cr)

κ

ω(ΩR)√
n

,

with probability greater than (1 − c3 exp(−c4ω2(Aw))),
where c3, c4 > 0 are constants.

Proof. We start from the optimality of β̂r:

β̂T Γ̂β̂ − β̂T
1

n
ZTy + λR(β̂)

≤ β∗T Γ̂β∗ − β∗T
1

n
ZTy + λR(β∗)

⇒ ∆T Γ̂∆ ≤ ∆T
( 1

n
ZTy − Γ̂β∗

)
+ λ(R(β∗)−R(β̂))

⇒ ∆T Γ̂∆ ≤ ∆T
( 1

n
ZTy − Γ̂β∗

)
+ λR(∆)

(4.33)

Equation (4.31) shows that the LHS is lower bounded, with
probability at least (1−2 exp(−η∗ω2(Aw))) where η∗ > 0 is
a constant, by RE condition as 0 ≤ κ‖∆‖22 ≤ ∆T Γ̂∆, where
κ = λmin(Σx|Aw)

(
1− c1 ω(Aw)√

n

)
− c2(λmin(Σw|Aw) +

λmax(Σw|Aw))ω(Aw)√
n

is a positive constant when n =

O(ω2(Aw)). Next, we bound the first term of the RHS,
1
n∆TZTy using Holder’s inequality:

∆T
( 1

n
ZTy − Γ̂β∗

)
≤ R(∆)R∗(

1

n
ZTy − Γ̂β∗)

≤ R(∆)λ
(4.34)

where the last inequality is from the definition of λ. Putting
the bound back to the original inequality (4.33) we get:

‖∆‖22 ≤ 2R(∆)
λ

κ
≤ 2Ψ(Cr)‖∆‖2

λ

κ
,(4.35)

and using Lemma 4 completes the proof.

Remark: Note that when R is the vector l1-norm

ω(ΩR) ≤
√
s log p, and we get the rate of O(

√
s log p
n ) for

(4.32) which matches the NCL bound of [14]. Note that
the NCL [14] bound hinges on the decomposability of the
l1 norm regularizer. Our analysis for (4.32) does not assume
decomposability, and follow arguments developed in [8].

5 NUMERICAL SIMULATIONS
In this section we provide numerical simulations to confirm
our theoretical results of Section 3. We focus on sparse re-
covery using noisy RME, i.e., R(β) = ||β||1 and investigate
l2-norm consistency.
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(a) LASSO
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(b) Noisy RME

Figure 1: l2 error vs. number of samples n.

5.1 l2 ERROR BOUND Experiments with l2 norm con-
sistency involves observing the norm of the error ‖∆‖2
which theory predicts it should decrease with the rate of

1√
n

and converge to some positive number depending on
Σw. We generate synthetic data from the model of Sec-

tion 3 with β∗ = (

s/2︷ ︸︸ ︷
−2,−2, . . . ,−2,

s/2︷ ︸︸ ︷
1, 1, . . . , 1,

p−s︷ ︸︸ ︷
0, . . . , 0),

xi ∼ N(0, Ip×p), wi ∼ N(0, σ2
wIp×p), and εi ∼ N(0, 0.1)

where p = 100, σ2
w ∈ {0, 0.1, 0.3, 0.5, 1} and s = 10. Note

that setting σ2
w = 0 results in the standard noiseless linear

model. Figure 1 shows that ‖β̂r − β‖2 decreases with in-
creasing number of samples. Each point is an average of 50
runs of the experiment. Clearly, when we increase the noise
variance σ2

w, LASSO is unable to recover the true parame-
ter vector: with 200 samples in noiseless case error drops to
‖∆‖2 ' 0.08 while with noise of σw = 1 it stays around 3.
Next we use the Noisy RME estimator and depict the same
diagram in Figure 1(b). In all level of noise, ‖∆‖2 error
drops with the similar rate and with 200 samples converges
to smaller value than the original estimator.

5.2 Noisy RME vs. Stable Feature Selection Different
level of noise in the covariates will effect the features being
picked by LASSO. We perform significant test and show that
in the case of noisy covariates it is helpful in recovering the
true support of the parameter vector. The major problem
with significant testing is that, first, one should solve the
estimation problem, e.g., LASSO, several times which is not
desirable. Secondly, if LASSO de-selects a feature in first
place there is no chance that permutation test can pick it up.
We show that Noisy RME can be a suitable replacement for
LASSO followed by significant testing.

We pick permutation test [16, 17] as our significant
testing method. In permutation test we randomly shuffle the
output variables y for v = 1000 times and each time perform
the estimation using LASSO on {(xi, π(yi))}ni=1 where π is
the permutation function. Name the output of LASSO on
each permuted data set as β̃ and the output of the LASSO
on original samples as β̂. Then we compute the following

probability:

pi =
count(|β̃i| ≥ |β̂i|)

v + 1
(5.36)

For β̂i to be a significant coefficient, pi should
be greater than 0.05. We call those β̂is signif-
icant factors. For this experiment we set β∗ =

(

1−10︷ ︸︸ ︷
−2,−2, . . . ,−2, 0, . . . , 0,

51−60︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0).

Figure 2 show the result of stability experiment. Each
row of diagrams represent the sparsity pattern (i.e., support)
of the estimated vector β̂ except the lowest row which
represent the sparsity pattern of true parameter vector β∗.
Figure 2(a) illustrates the features picked by LASSO. As we
expect when the noise level increases LASSO starts selecting
incorrect support and missing the correct support. To avoid
this we perform permutation test after LASSO and get the
2(b) which clearly conforms more to the support of β∗.
Although permutation test removes most of the non-support
features, at the same time it discards some support feature for
even small amount of noise. In contrast noisy RME of 2(c)
consistently selects most part of support even for σw = 1. As
we expect number of nonzero elements (selected features)
by permutation test (101) is less than features selected by
LASSO (127), since significant test only select important
subset of picked features. Note that number of features
picked by noisy RME (115) is the closest (on average) to
actual number of support (120 = 6× 20).

6 CONCLUSION
In this paper we investigate consistency of the regularized es-
timators for structured estimation in high dimensional scal-
ing when covariates are corrupted by additive sub-Gaussian
noise. Our analysis holds for any norm R, and shows that
when an estimate of the noise covariance is available, our es-
timators achieve consistent statistical recovery, and recently
developed methods for sparse noisy regression are special
cases. Finally in the presence of additive noise, our method
is stable, i.e., selects the correct support.
Acknowledgment: The research was supported by NSF
grants IIS-1447566, IIS-1447574, IIS-1422557, CCF-
1451986, CNS- 1314560, IIS-0953274, IIS-1029711, and by
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